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Abstract—The advent of open-source serverless computing
frameworks has introduced the ability to bring the Functions-
as-a-Service (FaaS) paradigm for applications to be executed on-
premises. In particular, data-driven scientific applications can
benefit from these frameworks with the ability to trigger scalable
computation in response to incoming workloads of files to be
processed. This paper introduces an open-source framework to
achieve on-premises serverless computing for event-driven data
processing applications that features: i) the automated provision-
ing of an elastic Kubernetes cluster that can grow and shrink, in
terms of the number of nodes, on multi-Clouds; ii) the automated
deployment of a FaaS framework together with a data storage
back-end that triggers events upon file uploads; iii) a service
that provides a REST API to orchestrate the creation of such
functions and iv) a graphical user interface that provides a unified
entry point to interact with the aforementioned services. Together,
this provides a framework to deploy a computing platform
to create highly-parallel event-driven file-processing serverless
applications that execute on customized runtime environments
provided by Docker containers that run on an elastic Kubernetes
cluster. The usefulness of this framework is exemplified by
means of the execution of a data-driven workflow for optimised
object detection on video. The workflow is tested under three
different workloads which process ten, a hundred and a thousand
functions. The results show that the presented architecture is able
to process such workloads taking advantage of its elasticity to
make a sensible usage of the resources.

Index Terms—Cloud Computing; Scientific Computing; Dis-
tributed Infrastructures; Containers; Docker;

I. INTRODUCTION

Cloud computing has introduced the ability to provide a
wide variety of well-known service models such as Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS). The increased levels of
automation together with the advent of lightweight workload
isolation mechanisms introduced by Linux containers paved
the way for the rise of the Functions as a Service (FaaS)
service model. This approach involves invoking user-defined
functions, coded in certain supported programming languages
in response to events that are triggered in a computing
and data storage infrastructure and that are typically run on
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a customized execution environment provided by a Linux
container. Although sometimes used interchangeably, FaaS
typically represents a subset of Serverless computing, a trend
based on creating application architectures that entirely rely on
Cloud services that provide automated resource provisioning
on behalf of (and transparent to) the user. Thus, by not
explicitly managing servers, developers can focus on the
definition of the application logic instead of devoting time
to infrastructure provision, configuration and scalability. The
SPEC Cloud Group [1] defines three key features of serverless
cloud architectures: i) granular billing: the user is only charged
when the application is running; ii) minimal operational logic:
the Cloud provider is responsible for resource management
and autoscaling and iii) event-driven: short-lived execution of
functions in response to events.

Public Cloud providers include in their portfolios services to
support FaaS. As an example, Amazon Web Services (AWS)
provides AWS Lambda, a service that can run thousands of
parallel invocations to user-defined functions in response to
multiple sources of events, such as an HTTP request, a file
upload to an Amazon S3 bucket (an object-based data store)
or a message sent to Amazon SQS, a service to create elastic
message queues. Notwithstanding the large elasticity, several
important limitations are currently exhibited by AWS Lambda.
The maximum execution time is restricted to 15 minutes;
the ephemeral storage space available to the invocations of
a Lambda function is restricted to 512 MB and, finally,
the runtime environments are pre-defined depending on the
programming language used to code the Lambda functions.

Previous work from the authors introduced SCAR (Server-
less Container-aware ARchitectures) [2] a framework to trans-
parently execute containers out of Docker images in AWS
Lambda, in order to run generic applications on that platform
(for example image and video manipulation tools such as
ImageMagick and FFmpeg or deep learning frameworks such
as Theano and Darknet) and code in virtually any program-
ming language (for example Ruby, R, Erlang and Elixir). This
allowed to introduce a High Throughput Computing model [3]
to create highly-parallel event-driven file-processing serverless
applications that execute on customized runtime environments
provided by Docker containers run on AWS Lambda. SCAR
provided a convenient approach to run generic applications
on AWS Lambda and was rapidly adopted by the community



(more than 400 stars on GitHub) and it is featured in the Cloud
Native Computing Foundation’s Serverless Landscape [4].

However, the limited ephemeral storage in AWS Lambda
and the rise of on-premises FaaS offerings revealed the need
to support scalable event-driven computing for data-processing
scientific applications in an on-premises environment. To this
aim, this paper introduces OSCAR (Open Source Serverless
Computing for Data-Processing Applications)1 a framework to
efficiently support on-premises FaaS (Functions as a Service)
for general-purpose file-processing computing applications.
The goal is to facilitate the adoption of event-driven compu-
tation for scientific applications that require processing data
files. This is achieved by providing users with the ability
to self-deploy an scalable integrated platform to be accessed
by simple graphical user interfaces to define and manage
the complete life cycle of functions that will be efficiently
triggered upon users uploading files to specified folders.

We aim to abstract away the details concerning the definition
of jobs to be executed, the sources of events, the management
of the resource contention, the management of the job outputs
and, specially, the deployment of the entire platform across
multi-Clouds, including both on-premises Cloud Management
Platforms (CMP) such as OpenNebula [5] and OpenStack [6]
and public Cloud providers as well. Users should be able to
upload input files through the web browser which triggers the
execution of the functions to process the files. Output file
results are made available to the user to be retrieved using
the web browser.

After the introduction, the reminder of the paper is struc-
tured as follows. First, section II introduces the related work
in the area. Next, section III provides an overview of the
architecture of the OSCAR framework. Then, section IV
presents an use case related to object detection in video in
order to test the scalability and reliability of the platform.
Section V presents the results obtained from the case-study
and finally, section VI summarises the main contributions of
this paper and presents the future works.

II. RELATED WORK

Serverless computing pursues the adoption of dynamic
elasticity handled by the Cloud provider for data-driven and
compute-driven applications. Few works can be found in the
literature concerning the application of serverless computing
in the field of scientific computing, mainly attributed to the
relatively young age of these computational approaches.

One of the pioneer works in this area is the paper by
Jonas et al. [7] which introduced the PyWren framework in
order to perform Python-based distributed computing on AWS
Lambda. This simplifies the access to distributed computing
by avoiding to provision and configure complex clusters and,
instead, define stateless functions to be run on the Cloud.
The authors extended the previous work in the contribution
by Shankar et al. [8] in order to introduce numpywren a
system for linear algebra that runs on AWS Lambda. They

1OSCAR - https://github.com/grycap/oscar

also introduced LAmbdaPACK a domain-specific language to
implement linear algebra algorithms that are highly parallel,
assessing the increased compute efficiency achieved and high-
lighting the limitations of the Cloud provider. In fact, the work
by Spillner et al. [9] assesses the benefits of adopting server-
less computing for multiple scientific domains: mathematics,
computer graphics, cryptology and meteorology, using both
public Cloud providers and self-hosted FaaS runtimes. The
work by Giménez-Alventosa et al. [10] uses AWS Lambda to
execute highly-parallel MapReduce jobs.

Authors such as Baldini et al. [11] address the problem
of function composition entirely performed by serverless
functions. Indeed, they demonstrate that function composition
in serverless applications is achievable but exhibit several
constraints to be considered such as avoiding double billing,
adopting a substitution principle and treating the functions as
black boxes.

The work by Adam Eivy [12] warns about the economic
benefits of serverless computing, which strongly depends on
the usage patterns and application workloads. Even though
the pricing of services such as AWS Lambda are billed in the
fraction of 100ms of execution time, these can rapidly add
up to surpass the cost of traditional computing approaches
involving virtual machines or even dedicated hardware.

Bringing the benefits of event-driven serverless computing,
especially concerning FaaS, to on-premises environments has
paved the way for multiple open-source FaaS frameworks
to appear. Some examples are OpenFaaS [13], Knative [14],
Kubeless [15], Fission [16], and Nuclio [17]. These platforms
support the definition and execution of functions in response
to events and they typically vary in the degree of support
to multiple source of events, their support to programming
languages and the usage of a certain Container Orchestration
Platform, such as Kubernetes. There can also be found in the
literature works related to serverless computing with these kind
of frameworks. This is the case of the work by Hendrickson
et al. [18] in which the authors introduce OpenLambda,
an open-source platform for building serverless applications
on-premises based on Linux containers. The authors further
evolve this platform to accommodate lean microservices that
depend on large libraries that start slowly and have an impact
on elasticity. For this, they introduce Pipsqueak, a package-
aware computing platform based on OpenLambda.

Indeed, the work by Baldini et al. [19] identifies several
challenges related to serverless computing that are tackled
by our proposed work. First, the ability to use declarative
approaches to control what is deployed and the required
tools to support it. We use a high-level declarative lan-
guage to define the deployment of the OSCAR framework
in order to achieve reproducible deployments across multi-
Clouds. Second, the support for long running jobs, by adopting
the Kubernetes container orchestration platform in order to
manage the execution of the jobs in response to the events,
but conveniently supplemented with an elasticity module to
support the horizontal elasticity of the nodes of the cluster.
The work by Erwin van Eyk et al. [1] also identifies some
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Fig. 1. Main components used in the OSCAR architecture. The orange dotted
line marks the components that allow elasticity at the level of virtual machines
(i.e. powering on and off nodes). The blue dashed line delimits the components
that provide the functions as a service and the event programming model.

perspectives regarding the direction of the serverless field.
They highlight the need to support hybrid Clouds, where
an application could be composed by functions deployed on
on-premises clusters, executing proprietary code, while other
parts of the application could be run on the FaaS service
offered by a public Cloud provider. For this, the ability to
deploy on-demand an event-driven FaaS platform on top of
an elastic Kubernetes cluster dynamically provisioned from
an on-premises Cloud represents a step forward towards this
aim.

III. THE OSCAR FRAMEWORK

This section provides an overview of the architecture of the
OSCAR framework, together with the open-source existing
developments integrated in the platform, as well as the open-
source developments carried out in order to produce such
integrated platform.

A. Architecture of OSCAR

Figure 1 provides a high-level overview of the open-source
components that are used in the OSCAR framework. In order
to facilitate the deployment of the elastic Kubernetes cluster
configured with all the services we rely on these tools:

• Infrastructure Manager (IM) [20], an open-source tool
to describe complex application architectures using high-
level declarative languages such as RADL (Resource
Application Description Language) [21] and the stan-
dard specification TOSCA (Topology and Orchestration
Specification for Cloud Applications) [22] in order to de-
ploy them on multiple back-ends such as public Clouds:
AWS, Microsoft Azure, Google Cloud Platform and on-
premises Cloud Management Platforms: OpenNebula and
OpenStack.

• CLUster Elasticity System (CLUES) [23], an open-source
modular elasticity system that supports a wide variety of
plugins in order to introduce elasticity capabilities for
cluster-based computing. Many plugins are supported in
order to introduce horizontal elasticity for different types

of clusters: i) based on an LRMS (Local Resource Man-
agement System), supporting SLURM and PBS/Torque;
ii) based on a Container Orchestration Platform, sup-
porting Apache Mesos, Kubernetes and Nomad and iii)
based on High Throughput Computing (HTC), supporting
HTCondor.

• Elastic Cloud Computing Cluster (EC3) [24], [25], an
open-source tool to deploy through the IM elastic com-
pute clusters on multi-Clouds that can scale in/out in
terms of the number of nodes according to certain elas-
ticity rules defined in the corresponding CLUES plugin.

The aforementioned components are currently being used in
production in the EGI Federated Cloud [26], a federated IaaS
Cloud, composed of academic private clouds and virtualised
resources and built around open standards, whose development
is driven by the requirements of the scientific communities
[27].

In addition, the open-source software developments that are
used by OSCAR are:

• OpenFaaS. A framework for building serverless functions
with Docker and Kubernetes.

• Minio. An object storage server that features an Amazon
S3 compatible API.

• Kaniko. A tool to build container images from a Dock-
erfile, inside a Kubernetes cluster.

Figure 2 provides an overview of the interaction among the
services deployed in the elastic Kubernetes cluster dynamically
provisioned by the OSCAR framework.

OSCAR Manager is the service that provides the orchestra-
tion of the other services. It offers a REST API that allows the
user to initialize and invoke functions. The process to create a
function is completely transparent to the user and is comprised
of the following steps: 1) Using the web interface, the user
generates a request to create a function that is received by the
OSCAR Manager service; 2) The required Docker image is
created by Kaniko using as base image the user’s image, in
order to inject a supervisor in charge of managing the input
data required and the output data generated by the application
execution. Once the Kaniko build is finished, the image is
registered in the Docker registry deployed in Kubernetes; 3)
The required input/output buckets are created in Minio; 4) The
function is created in OpenFaaS. OpenFaaS uses as image for
the function the image created by Kaniko and retrieves it from
the Docker registry.

OpenFaaS is designed to process short-lived requests and,
therefore, attempting to execute several long running jobs
at the same time could end up collapsing the cluster due
to the lack of resources for all the processes. To be able
to support long running jobs we developed a new service
(i.e. OSCAR worker in Fig 2) that transforms asynchronous
requests sent to OpenFaaS into Kubernetes jobs. Thus, the
steps taken when executing a function are as follows. First,
when the user uploads a file to a Minio bucket, an event is
triggered and sent to OpenFaaS as an asynchronous request
which is stored in the NATS queue provided by OpenFaaS.
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Fig. 2. Architectural approach for supporting container-based file-processing applications on serverless platforms.

Second, the OSCAR worker (that is subscribed to the NATS
queue) reads the asynchronous request and then creates and
submits a new job to Kubernetes. Submitting a job to Ku-
bernetes allows OSCAR to delegate the resource management
to both Kubernetes and the CLUES elasticity system. CLUES
detects when the Kubernetes cluster needs more resources and
provisions new nodes accordingly. Likewise, if CLUES detects
that Kubernetes has spare nodes that are no longer needed, it
terminates them.

For the development of the OSCAR UI (User Interface),
VueJS and Vuetify were used. Both are accessible and versatile
frameworks for building user interfaces. VueJS is a progressive
JavaScript framework, with intuitive, modern and easy to
use features, and has a very active community. Vuetify is a
semantic component framework for VueJS. It aims to provide
clean, semantic, and reusable components.

The graphical user interface is deployed inside the Ku-
bernetes cluster, so it is necessary to externally expose the
application through a port. Since VueJS is a frontend frame-
work, and the application is executed on the client side, it
was necessary to create a Node.js application that interacts
with other internal services of the Kubernetes cluster such
as OSCAR Manager, Minio, and OpenFaaS. The application
was created using Express which is a robust, fast and flexible
framework for Node.js applications.

Figure 3 depicts the Functions tab where you can create,

Fig. 3. OSCAR graphical user interface. The functions tab shows the user
the functions created and the function status.

edit or delete functions and Figure 4 shows the Storage tab
where the information of the buckets is shown, as well as the
stored files. In the Storage tab users can upload the files to
be processed, remove them from the buckets or download the
output files generated by a function.

All the aforementioned components are dynamically pro-
visioned inside the Kubernetes cluster via the corresponding
Ansible Roles made available as open-source contributions in
GitHub2

IV. CASE STUDY - VIDEO PROCESSING SERVICE

In order to assess the OSCAR framework we are going to
deploy a serverless video processing service in an on-premises
OpenNebula-based Cloud. This service is comprised of two

2GRyCAP GitHub organization: https://github.com/grycap
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Fig. 4. OSCAR graphical user interface. The storage tab shows the user the
Minio buckets automatically created when the function is deployed in the
infrastructure and the stored files inside those buckets.

functions linked by means of an storage bucket, so when
the first function finishes, the second function is triggered
automatically. The goal of this architecture is to apply object
recognition to the frames of the video uploaded by the user
as input. Figure 5 shows the workflow of the architecture
proposed. The files needed to reproduce the case study are
open-source and available in GitHub3.

The video processing function uses the ffmpeg library to
extract the keyframes from the input video. To be able to
create different workloads, the keyframe extraction rate has
been changed to generate different amounts of images. The
image processing function uses the darknet framework in
combination with the YOLOv3 library [28] to detect the
objects in the image. All the libraries and frameworks have
been compiled to support CPU-based executions.

The following points explain the steps taken during the
experiment execution:

1) Using the OSCAR UI the user creates the video process-
ing and the image processing functions. By defining the
output bucket of the video processing function as the
input bucket of the image processing function the user
is creating the workflow that is going to be triggered
when a file is uploaded into the input bucket. Bear in
mind that the creation of the required containers, the
container registration in the internal Docker registry, the
creation of the needed Minio buckets, and the creation
of the OpenFaaS function is automatically performed
without any user interaction.

2) Through the OSCAR UI, the user uploads to the input
bucket of the video function the video to process. After
this step the user interaction is not required anymore
until the retrieval of the output data.

3) After the video upload finishes, Minio creates an event
that is pushed to OpenFaaS which stores the event
received in the NATS queue. Afterwards, the OSCAR
worker reads the NATS queue and launches the function
as a Kubernetes job. During the function execution, the
OSCAR supervisor library that is deployed inside the
function retrieves the video from the Minio bucket and
stores it inside the pod. Then, the user script is executed
and the generated output is stored in an specified output
folder. As a last step in the execution of the video

3https://github.com/grycap/oscar/tree/master/examples/video-process
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function, the OSCAR supervisor uploads all the files
present in the output folder to the output bucket defined,
thus triggering the image processing function.

4) Minio detects the new files in the input bucket and starts
the process again but this time triggering the image
processing function. Minio is going to generate an event
for each file uploaded to the bucket, so we automatically
end up with a function being launched for each image
stored in the input bucket. The invocation and execution
process of the function is the same as in the previous
step but changing the container and the script executed.
After the image processing function finishes, the output
files generated are stored in the output bucket linked to
the function.

5) The last step involves the user downloading the files
generated by all the executed functions.

V. RESULTS

To test the scalability and reliability of the infrastructure
proposed we used three different workloads based on the
number of images extracted from each video. Thus, for the
first workload we extracted 10 images, 100 for the second
workload and 1000 for the third. These workloads involved
the invocation of 11, 101 and 1001 functions respectively
in the OSCAR cluster, one for the video processing and the
remaining for the image processing.

The specifications for the virtual cluster used in the case
study are the following: the front-end has 8 virtual CPUs and
16 GiB of RAM. The working nodes have 4 virtual CPUs and
8 GiB of RAM. The specifications were selected to simulate
two of the most common instances used to process compute-
intensive workloads in Amazon Web Services. The front-end
is equivalent to a c5.2xlarge and the nodes are equivalent to
a c5.xlarge. The complete virtual cluster is composed by 1
front-end and a maximum of 10 nodes which will be powered
on on-demand. All the machines used are virtual machines
deployed in an OpenNebula-based on-premises cloud.

Figure 6 shows the state of the nodes during the execution of
the three proposed workloads. The colors of the areas represent
the following: the blue area represents the nodes that are idle
(i.e. waiting for jobs); the dark orange area represents the
nodes that are busy processing Kubernetes jobs; the grey area
shows the number of nodes that are powering on and the gold
area shows the number of nodes that are powering off. The
data in the graph is stacked, thus the areas that have no color
represent nodes that are powered off and are not consuming
resources in the infrastructure.

In order to immediately process small workloads, the de-
ployed cluster always has a working node available. This is
represented by the orange area along the first 10 minutes in
Figure 6. Afterwards, the first workload starts (i.e. process
a video and ten extracted images). In the minute 10, the
video is processed by the available node and the images to
analyze are generated. CLUES realizes that it does not have the
required resources to process the new function invocations and
provisions additional nodes to process the incoming workload.

This process can be seen in the first grey area in minute 12.
The nodes in power on state take 3 minutes to deploy which is
enough time for the already deployed working node to process
the 10 jobs in the queue. Therefore, the new nodes that are
deployed are in idle state and after a couple of minutes are
powered off to save resources (this is represented by the gold
area in minutes 14-16).

The second workload starts in minute 17. As in the first
workload, the available working node is enough to process
the uploaded video. This time 100 functions are generated,
so the CLUES system powers on all the available nodes to
attend the requests (this is represented by the second grey area
between the minutes 18 and 26). The new nodes powered on
start executing the functions just after being initialized so no
idle nodes are seen until the functions allocated in those nodes
are finished. The execution of the second workload finishes in
minute 36 and it is represented by the highest peak of the idle
area (i.e. the blue area).

With the third workload we wanted to test the reliability of
the infrastructure under a high load. As stated at the beginning
of the section, 1001 function invocations were launched and
processed. In Figure 6 it can be seen that this was carried
out between the minutes 37 and 78. In minute 37 all the
working nodes that were idle receive new function invocations
to process and the cluster continues processing them until
minute 73 where the first working nodes start to be idle.
After being idle for 5 minutes and not receiving new function
invocations, CLUES started to power off nodes until only one
working node is left.

Figure 7 shows the RAM memory and CPU usage of the
nodes along the execution of the three workloads tested. The
graph represent the stacked resources for each node and the
green line represents the total amount of resources reserved in
the cluster infrastructure. Since each function invocation has
the same resource requirements and all the functions use the
maximum resources available in each execution,the graphs of
RAM and CPU usage can be combined. It is also important
to know that no more than three functions per node could be
deployed due to the image function requirements (i.e. 1 CPU
and 2 GiB of RAM) and that Kubernetes also needs to deploy
their own pods to control each node (those pods also use CPU
and RAM resources). This behaviour caused that several GiB
of RAM and CPUs were unused because the unused space in
each node was less than the minimum space required by the
functions and that is represented by the white area under the
green line which is the total amount of resources.

As Figure 6, Figure 7 clearly depicts the execution of the
three workloads. From minutes 10 to 12 there is a peak in
resources consumption in the available working node. After the
cluster finishes deploying new nodes this peak has disappeared
(i.e. the execution of the functions has finished) and the
new reserved resources (the working nodes) are freed again
(terminated). The second workload starts in minute 17 and has
its maximum peak of RAM and CPU consumption in minute
26 after all the nodes have been deployed. As the functions
are processed, the usage of the resources of the working nodes



Fig. 6. State of the nodes during the execution of the three different workloads.

Fig. 7. RAM and CPU usage during the execution of the three different workloads (11, 101 and 1001 functions executed respectively).

decreases but the nodes are not terminated, thus not releasing
the reserved infrastructure resources. The third workload starts
in minute 37, then the maximum number of functions per node
are deployed again and this behaviour continues until the 1000
images are processed in the minute 78. Once CLUES detects
that the working nodes are idle for 5 minutes, it terminates
them. The green line (total amount of resources reserved) at
the end of the graph going down represents this release of
resources.

As a summary of the results, the framework was able to
process three different workloads, executing 11, 101 and 1001
functions. The first 11 function invocations were processed
in 3 minutes and no extra nodes were needed (two new
nodes were powered on but were never used). Processing
the 101 function invocations made the cluster reach its top
performance as seen in Figure 7 and it took 19 minutes to

finish (including the deployment time of nodes which is 3
minutes). The third workload, processing 1001 functions, also
fills all the available processing slots of the infrastructure’s
nodes. The third workload finishes in 41 minutes. This time
could be improved by deploying a bigger cluster (e.g. 20 nodes
instead of 10). Thanks to the elasticity of the cluster, these
nodes would only be used when a high amount of function
invocations are needed to be processed, being powered off
the remaining time. To deploy a bigger cluster, the user only
has to change the maximum number of nodes available when
deploying a new cluster. The OSCAR framework will manage
everything else to use those new resources.

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced a framework to support serverless
computing in on-premises platforms for event-driven data-



processing applications. First of all, a plugin to enable hor-
izontal scalability of a Kubernetes cluster has been created,
in order to cope with incoming workloads by provisioning
additional virtual machines from the underlying Cloud com-
puting platform employed. Second, the automated deployment
and orchestration of the multiple services required to support
this framework is performed with the help of the EC3 and IM
tools, including a FaaS framework, an event-aware data storage
back-end, and support for building and storing Docker images.
Third, an integrated web-based graphical user interface is pro-
vided in order to simplify the interaction with the computing
platform and that interacts with the services deployed inside
the Kubernetes cluster.

Users are provided with an open-source platform offered
via a convenient web interface that simplifies the creation
and execution of the functions. The users just need to upload
their files in order to trigger the concurrent execution of the
application. The application will process the uploaded file and
leave the output data files in the corresponding folder for the
users to retrieve them. Being able to interact with a computing
platform without requiring the definition of jobs using com-
plex domain specific languages (DSLs), and by means of a
web browser represents a step forward towards simplifying
application execution for data-processing applications.

Finally, due to the resource requirements of the Kubernetes
infrastructure, the RAM memory and CPU resources of the
working nodes could not be completely used. Further work in
the infrastructure refining the requirements and the behaviour
of the required pods could lead to a better usage of the cluster
resources and thus to a higher throughput when processing
functions. Also future work involves integrating additional
sources of events for multiple scientific storage back-ends
such as Onedata or dCache. In addition, we plan to integrate
OSCAR with SCAR in order to achieve event-driven hybrid
serverless workloads across on-premises and public Clouds.

REFERENCES

[1] E. van Eyk, A. Iosup, S. Seif, and M. Thömmes, “The SPEC
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